Customization: | Available |
---|---|
Type: | Centrifuge |
Object: | Cosmetic |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
LWS three-phase centrifuge can continuously feed, separate and discharge at full speed. It has the characteristics of compact structure, easy sealing, stable operation, low noise, large processing capacity, low energy consumption, high degree of automation, low labor intensity, convenient operation and maintenance, wide application range and so on. For some materials that are difficult to separate, in addition to taking corresponding adjustment measures for the separat-ed materials themselves, the centrifuge can also be adjusted and improved accordingly:
1. Increase the length diameter ratio;
2. Adjust the rotating speed of the drum;
3. Adjust the differential speed between the drum and the discharge screw;
4. Change the half cone angle of the drum cone section and adopt multi cone angle sorew;
5. Adjust the overflow radius of the liquid phase outlet;
6. Change the number of screw heads and screw lifting angle of discharge screw;
7. Add BD plate structure;
The Ingenious Working Principle of Decanter Centrifuges
A decanter centrifuge thrives on the principle of buoyant separation. Within a mixture, a denser component naturally sinks, while a less dense one rises. In a decanter centrifuge, continuous spinning magnifies settling speed, generating extreme g-forces ranging from 1000 to 4000 G's. This innovation reduces settling times drastically, transforming hours-long processes into mere seconds, delivering fast and manageable separation results.
Imagine a decanter as a cylindrical sedimentation tank rotating around an axis. In this setup, denser solid particles gravitate to the bottom, forming a solid phase sediment. In a centrifuge, however, centrifugal acceleration takes the lead. Denser particles are propelled outward in the rotating bowl, forming a sediment along the inner wall. The rapid application of centrifugal forces, approximately 3000 g, ensures separation occurs exponentially faster than in a gravitational field.
Bowl ID (mm) |
Bowl Speed (rpm) |
L / D | G - Force | Capacity (m3/h) |
Solids Removal (m3/h) |
Primary Motor (Kw) |
Weight (Kg) |
Dimension (mm) |
250 | 4500~4600 | 3.0~5.0 | 2000~3500 | 3~5 | 0.4 | 11 | 760 | 1600×1100×850 |
300 | 4000~4600 | 3.0~5.0 | 2000~3500 | 3~15 | 0.8 | 11~15 | 1500 | 2470×1230×850 |
360 | 3200~4200 | 3.0~5.0 | 2000~3500 | 5~20 | 1.2 | 5~22 | 2000 | 2790×1300×880 |
400 | 3200~3900 | 3.0~4.8 | 2000~3500 | 5~30 | 2 | 18.5~30 | 2600 | 2950×1400×850 |
450 | 3000~3700 | 3.0~5.0 | 2000~3500 | 5~45 | 2.5 | 22~37 | 3200 | 3300×1500×920 |
500 | 2700~3450 | 3.0~5.0 | 2000~3500 | 10~80 | 5 | 30~55 | 5200 | 3730×1600×1100 |
550 | 2600~3300 | 3.0~5.0 | 2000~3500 | 10~90 | 6 | 45~75 | 6900 | 4000×1400×1600 |
600 | 2500~3200 | 3.0~5.0 | 2000~3500 | 20~95 | 7 | 37~90 | 7900 | 4200×1800×1350 |
650 | 2400~3100 | 3.0~5.0 | 2000~3500 | 20~105 | 8 | 37~90 | 8200 | 4300×1900×1350 |
750 | 2200~2900 | 3.0~5.0 | 2000~3500 | 30~120 | 12 | 55~135 | 12000 | 5000×2500×1500 |
900 | 1800~2600 | 3.0~5.0 | 2000~3500 | 40~180 | 16 | 75~160 | 18000 | 6500×2700×150 |