Customization: | Available |
---|---|
Type: | Centrifuge |
Object: | Cosmetic |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
The LWS Three Phase Decanter is a new type of three phase horizontal screw decanter centrifuge mainly suitable for three phase separation oil,water and slage in the oil production line,and also applicable to three phase separation of liquid-liquid-solid from olive oil,palm oil,coal tar and other similar materials.
This decanter centrifuge continuously produce with a high production capacity and small energy consumption per unit,but also has the best separation effect,minimum material loss,most convenient operation and most economical installation and maintenance costs,the new light and heavy liquid phase distribution devices and reliable labyrinth seal structure are used to achieve the best oil and water separation,the advanced slag-discharge structure is also used to achieve the continous and smooth solid phase slag discharge avoiding the occurrence of blocking materials,while eliminating solid phase and water mixing in downtime.
The decanter centrifuge adopts double variable-frequency stepless speed regulation for start and speed control with simple debugging and high adaptability.
The Ingenious Working Principle of Decanter Centrifuges
A decanter centrifuge thrives on the principle of buoyant separation. Within a mixture, a denser component naturally sinks, while a less dense one rises. In a decanter centrifuge, continuous spinning magnifies settling speed, generating extreme g-forces ranging from 1000 to 4000 G's. This innovation reduces settling times drastically, transforming hours-long processes into mere seconds, delivering fast and manageable separation results.
Imagine a decanter as a cylindrical sedimentation tank rotating around an axis. In this setup, denser solid particles gravitate to the bottom, forming a solid phase sediment. In a centrifuge, however, centrifugal acceleration takes the lead. Denser particles are propelled outward in the rotating bowl, forming a sediment along the inner wall. The rapid application of centrifugal forces, approximately 3000 g, ensures separation occurs exponentially faster than in a gravitational field.
Bowl ID (mm) |
Bowl Speed (rpm) |
L / D | G - Force | Capacity (m3/h) |
Solids Removal (m3/h) |
Primary Motor (Kw) |
Weight (Kg) |
Dimension (mm) |
250 | 4500~4600 | 3.0~5.0 | 2000~3500 | 3~5 | 0.4 | 11 | 760 | 1600×1100×850 |
300 | 4000~4600 | 3.0~5.0 | 2000~3500 | 3~15 | 0.8 | 11~15 | 1500 | 2470×1230×850 |
360 | 3200~4200 | 3.0~5.0 | 2000~3500 | 5~20 | 1.2 | 5~22 | 2000 | 2790×1300×880 |
400 | 3200~3900 | 3.0~4.8 | 2000~3500 | 5~30 | 2 | 18.5~30 | 2600 | 2950×1400×850 |
450 | 3000~3700 | 3.0~5.0 | 2000~3500 | 5~45 | 2.5 | 22~37 | 3200 | 3300×1500×920 |
500 | 2700~3450 | 3.0~5.0 | 2000~3500 | 10~80 | 5 | 30~55 | 5200 | 3730×1600×1100 |
550 | 2600~3300 | 3.0~5.0 | 2000~3500 | 10~90 | 6 | 45~75 | 6900 | 4000×1400×1600 |
600 | 2500~3200 | 3.0~5.0 | 2000~3500 | 20~95 | 7 | 37~90 | 7900 | 4200×1800×1350 |
650 | 2400~3100 | 3.0~5.0 | 2000~3500 | 20~105 | 8 | 37~90 | 8200 | 4300×1900×1350 |
750 | 2200~2900 | 3.0~5.0 | 2000~3500 | 30~120 | 12 | 55~135 | 12000 | 5000×2500×1500 |
900 | 1800~2600 | 3.0~5.0 | 2000~3500 | 40~180 | 16 | 75~160 | 18000 | 6500×2700×150 |