Customization: | Available |
---|---|
Type: | Centrifuge |
Object: | Cosmetic |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Decanter centrifuge is a type of centrifuge that is used to separate solids from liquids in a mixture. It is a continuous process that uses centrifugal force to separate the two components. The mixture is fed into the centrifuge, and the solids are separated from the liquids by the centrifugal force generated by the spinning of the centrifuge ,When it comes to separating solid/liquid mixes with a high solids content, decanter centrifuges are the way to go. These solid-shell scroll centrifuges or decanters, unlike chamber filter presses, run continuously. The finely distributed solid particles are separated from the suspension by strong centrifugal forces.
Decanters are useful in a wide variety of industries throughout the world. The centrifuges are optimally adapted for the specific application. Applications range from sludge dewatering to classification or wet classification to the sorting of solids.
To obtain optimum results, solid bowl decanter centrifuges must be custom designed to suit specific separation processes.
The Ingenious Working Principle of Decanter Centrifuges
A decanter centrifuge thrives on the principle of buoyant separation. Within a mixture, a denser component naturally sinks, while a less dense one rises. In a decanter centrifuge, continuous spinning magnifies settling speed, generating extreme g-forces ranging from 1000 to 4000 G's. This innovation reduces settling times drastically, transforming hours-long processes into mere seconds, delivering fast and manageable separation results.
Imagine a decanter as a cylindrical sedimentation tank rotating around an axis. In this setup, denser solid particles gravitate to the bottom, forming a solid phase sediment. In a centrifuge, however, centrifugal acceleration takes the lead. Denser particles are propelled outward in the rotating bowl, forming a sediment along the inner wall. The rapid application of centrifugal forces, approximately 3000 g, ensures separation occurs exponentially faster than in a gravitational field.
Bowl ID (mm) |
Bowl Speed (rpm) |
L / D | G - Force | Capacity (m3/h) |
Solids Removal (m3/h) |
Primary Motor (Kw) |
Weight (Kg) |
Dimension (mm) |
250 | 4500~4600 | 3.0~5.0 | 2000~3500 | 3~5 | 0.4 | 11 | 760 | 1600×1100×850 |
300 | 4000~4600 | 3.0~5.0 | 2000~3500 | 3~15 | 0.8 | 11~15 | 1500 | 2470×1230×850 |
360 | 3200~4200 | 3.0~5.0 | 2000~3500 | 5~20 | 1.2 | 5~22 | 2000 | 2790×1300×880 |
400 | 3200~3900 | 3.0~4.8 | 2000~3500 | 5~30 | 2 | 18.5~30 | 2600 | 2950×1400×850 |
450 | 3000~3700 | 3.0~5.0 | 2000~3500 | 5~45 | 2.5 | 22~37 | 3200 | 3300×1500×920 |
500 | 2700~3450 | 3.0~5.0 | 2000~3500 | 10~80 | 5 | 30~55 | 5200 | 3730×1600×1100 |
550 | 2600~3300 | 3.0~5.0 | 2000~3500 | 10~90 | 6 | 45~75 | 6900 | 4000×1400×1600 |
600 | 2500~3200 | 3.0~5.0 | 2000~3500 | 20~95 | 7 | 37~90 | 7900 | 4200×1800×1350 |
650 | 2400~3100 | 3.0~5.0 | 2000~3500 | 20~105 | 8 | 37~90 | 8200 | 4300×1900×1350 |
750 | 2200~2900 | 3.0~5.0 | 2000~3500 | 30~120 | 12 | 55~135 | 12000 | 5000×2500×1500 |
900 | 1800~2600 | 3.0~5.0 | 2000~3500 | 40~180 | 16 | 75~160 | 18000 | 6500×2700×150 |